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INTRODUCTION
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What is graph?

Graphs

Figure: A graph G

@ Vertices or nodes (denoted by V(G))
e Edges (denoted by E(G))
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What is graph?

A motivating example

@ Graphs are used to model pairwise relations between objects.
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Optimization problems in Graph Theory

Some well-known graph optimization problems
(NP-Complete)

coloring
chromatic number : x

@ Coloring: Assignment of colors to the vertices, no adjacent vertices
receive the same color — minimize the number of colors
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Optimization problems in Graph Theory

Some well-known graph optimization problems
(NP-Complete)

coloring maximum clique
chromatic number : x clique number : w

@ Coloring: Assignment of colors to the vertices, no adjacent vertices
receive the same color — minimize the number of colors

@ Maximum clique: Finding set of pairwise adjacent vertices with
maximum cardinality



Introduction & motivation
°

Optimization problems in Graph Theory

Some well-known graph optimization problems
(NP-Complete)

coloring maximum clique max independent set
chromatic number : x clique number : w independent set number: «

@ Coloring: Assignment of colors to the vertices, no adjacent vertices
receive the same color — minimize the number of colors

@ Maximum clique: Finding set of pairwise adjacent vertices with
maximum cardinality

@ Maximum independent set: Finding set of pairwise non-adjacent
vertices with maximum cardinality
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Even-hole-free graphs

Terminology: even hole

cycle
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Even-hole-free graphs

Terminology: even hole

cycle



Introduction & motivation
L Ie]

Even-hole-free graphs

Terminology: even hole

cycle chordless cycle
(hole if it has length > 4)
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Even-hole-free graphs

Terminology: even hole

cycle odd hole
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Even-hole-free graphs

Terminology: even hole

cycle even hole



Introduction & motivation
oe

Even-hole-free graphs

Terminology: induced subgraph, even-hole-free graphs

@ H is an induced subgraph of G if H can be obtained from G
by deleting vertices (denoted by H Cipq G)

Figure: A graph, an induced subgraph, and a non-induced subgraph
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Even-hole-free graphs

Terminology: induced subgraph, even-hole-free graphs

@ H is an induced subgraph of G if H can be obtained from G
by deleting vertices (denoted by H Cipq G)

Figure: A graph, an induced subgraph, and a non-induced subgraph

@ G is H-free if no induced subgraph of G is isomorphic to H
@ When F is a family of graphs, F-free means H-free, VH € F

Even-hole-free (EHF): the graph does not contain even
hole as an induced subgraph
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Motivation

Motivation: relation to perfect graphs

Perfect graphs:

e Every graph G satisfies x(G) > w(G
e G is perfect if V H Cing G, x(H) = w(H)

Corp, k=3, X(G) =3, w(G)=2 Corr1, X(G)=k+1, w(@) =k

an antihole Cy: the “complement” of a hole Cy
e Strong Perfect Graph Conjecture (Berge, 1961):
G is perfect iff G is (odd hole, odd antihole)-free

(proved by Chudnovsky, Robertson, Seymour, Thomas (2002))
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Motivation

Motivation: perfect graphs versus even-hole-free graphs

Dichotomy of the two classes:
e EHF graphs are (even hole, even antihole length > 6)-free

Comparison of the decomposition theorems
Decomposition theorem: If G belongs to C then G is either “basic” or G
has some particular cutset.

EHF graphs * Perfect graphs!
. cliques, holes, bipartite, bipartite,
Basic . N T
long pyramids, | L(bipartite), L(bipartite)
graphs . .
nontrivial basic doubled graphs
2-join, 2-join, 2-join
Cutsets star cutset homogeneous pair,
balanced skew partition

*Ref: Conforti, Cornuéjols, Kapoor, Vuskovi¢ (2002)
TRef: Chudnovsky, Robertson, Seymour, Thomas (2002)
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Motivation

Motivation: perfect graphs versus even-hole-free graphs

‘ EHF graphs ‘ Perfect graphs

Structure ‘ “simpler” ‘ more complex
Maximum clique ‘ easy ‘ easy
Coloring ‘ ? ‘ easy
Maximum independent set ‘ ? ‘ easy

“Easy” means the complexity is polynomial

@ Goal of study: to have better understanding of the structure
of even-hole-free graphs
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SURVEY ON TREE-WIDTH
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Tree-width definition

Tree-width and chordalization

Tree-width: a parameter measuring how far a graph from being a tree

tw(G) = min {w(H) — 1}

H chordalization of G

@ Chordal graphs are graphs possessing no hole
@ A chordalization of G is a graph H obtained by adding edges
to G, such that H is chordal

. H @

B>
AR 4

c d c d @ @

Figure: A chordalization of a graph and its tree-like structure




Survey on tree-width
oeo

Tree-width definition

The use of tree-width

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic
of graphs can be decided in linear time on graphs of bounded
tree-width.

Some graph problems expressible in MSO:
@ coloring, maximum independent set, maximum clique
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Tree-width definition

The use of tree-width

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic
of graphs can be decided in linear time on graphs of bounded
tree-width.

Some graph problems expressible in MSO:
@ coloring, maximum independent set, maximum clique

Sufficient conditions for graphs with high tree-width:
o large w
@ big clique minor

_—
contracted
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Tree-width definition

Relation between width parameters

Lemma (Corneil, Rotics (2005) and Oum, Seymour (2006))

For every graph G, the followings hold:
o w(G) < cw(G) < 2™(6)+1,
o cw(G) < 3. 2w(6)-L.
e tw(G) < pw(G).

Notation: rw: rank-width, cw: clique-width, tw: tree-width, pw:
path-width
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Survey on tree-width

Survey: bounded tree-width EHF graphs

Remark: in general, the tree-width of even-hole-free graphs is

unbounded
@ Planar EHF — tw < 49 [Silva, da Silva, Sales (2010)]
@ Kj-free EHF — tw < 5 [Cameron, da Silva, Huang, Vugkovié (2018)]
@ Pan-free EHF — tw < 1.5w(G) — 1 [Cameron, Chaplick, Hoang
(2015)]
@ Cap-free EHF — tw < 6w(G) — 1 [Cameron, da Silva, Huang,

Vugkovi¢ (2018)]

7 <7

Figure: Pan and cap
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Survey on tree-width

Survey: unbounded tree-width EHF graphs

Diamond-free EHF — unbounded rank-width (stronger)
[Adler, Le, Miiller, Radovanovi¢, Trotignon, Vugkovi¢ (2017)]

diamond

Figure: A diamond-free EHF graph without clique cutset with large
rank-width
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Survey on tree-width

Problem statement

@ All examples of EHF graphs with unbounded width contain
large cliques
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Survey on tree-width

Problem statement

@ All examples of EHF graphs with unbounded width contain
large cliques

Problem (Cameron, Chaplick, Hoang (2018))

Let G be even-hole-free, is tw(G) < f(w(G))?
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Survey on tree-width

Problem statement

@ All examples of EHF graphs with unbounded width contain
large cliques

Problem (Cameron, Chaplick, Hoang (2018))

Let G be even-hole-free, is tw(G) < f(w(G))?

@ No, we prove that there are EHF graphs with small w, but high
tree-width

@ We study even-hole-free graphs with no Ky
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LAYERED WHEEL



Layered wheel
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Relation between EHF graphs & Truemper configurations

Truemper configurations

theta, prism pyramid

Figure: Truemper configurations; dashed lines represent paths of length
at least 1
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Relation between EHF graphs & Truemper configurations

Truemper configurations

theta prism pyramid wheel

Figure: Truemper configurations; dashed lines represent paths of length
at least 1

@ They appear in the decomposition theorems of graphs in the

classes
‘ EHF graphs ‘ Perfect graphs
Theta X v
Prism X v
Pyramid v X

Wheel | (no even wheel) | (no wheel of some kind)
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Relation between EHF graphs & Truemper configurations

Theta-free graphs (TTF) & even-hole-free graphs (EHF)

(even hole,
triangle)-free

(even hole,
Ky)-free

‘ (Even hole, Ky)-free graphs ‘ (Theta, triangle)-free graphs

Theta X X
Prism X X
Pyramid X v
Wheel v v
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Construction of layered wheels

Our main results

We prove that the following classes have unbounded tree-width

o (Theta, triangle)-free graphs
e (Even hole, Ky)-free graphs

Layered wheels: family of graphs in the classes with high
tree-width

Notation Gy

@ ¢ > 1 is the number of layers
@ k > 4 is the length of the shortest hole
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo

Ly

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo
Ly

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo
Ly

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

AN S

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

AN S

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

AN

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

AN

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo
Ly

AANN N

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

Lo
Ly

AANN N

TTF layered wheel G(4, k), with £ =2 and k =4
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Construction of layered wheels

Sketch of proof

@ Gy is full of subdivision of claws, but it is theta-free

u
u

A\, theta

N
N
N
N

.
.
’

1

1
v
v

o tw(Gy k) > ¢, because Gy contains big clique minor

-

£+ 1 layers

il ps ps i by by el

\ contract every layer into a vertex



Layered wheel
oooe

Construction of layered wheels

Construction: (even hole, Ky )-free layered wheel

@ The first two layers are similar to T TF-layered-wheel

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

, ********************* -

7 N

7

TN

LLLLLL
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Logarithmic tree-width

Logarithmic bound on the tree-width of layered wheels

The tree-width of layered wheel is still bounded

Theorem (Sintiari, Trotignon (2019))

tw(Gpk) = O(log(|V(Grk)l))

Key of proof:

O To reach tw(Gyx) > ¢, it must be |V(Gy )| > 3¢ vertices.
@ Upper bound: tw(Gy ) < 2¢.
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Summary of results

Summary of results

Theorem (Sintiari, Trotignon (2019))
V¢ > 1,k > 4 integers, 3 a graph Gy s.t.
o Gy is theta-free;
@ every hole in Gy has length > k;
o /< tw(Gpk) < c-log(|]V(Gek)

), for some constant c.
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Summary of results

Summary of results

Theorem (Sintiari, Trotignon (2019))
V¢ > 1,k > 4 integers, 3 a graph Gy s.t.
o Gy is theta-free;
@ every hole in Gy has length > k;
o /< tw(Gpk) < c-log(|]V(Gek)

), for some constant c.

Theorem (Sintiari, Trotignon (2019))

V¢ > 1,k > 4 integers, 3 a graph Gy s.t.
o Gy is (even hole, Ky, pyramid)-free;

@ every hole in Gy has length > k;
o ! < tw(Gpk) < c-log(|]V(Gerk)

), for some constant c.
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Bounds on tree-width
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Motivation

Motivation: the logarithmic conjecture

Conjecture (Logarithmic tree-width; Sintiari, Trotignon (2019))

dc constant s.t. V (even hole, Ky )-free graph G,
tw(G) < clog |V(G)|.

If the conjecture is true, then many graph optimization problems
are polynomial-time solvable.

Theorem (Bodlaender (1988))

VG, given a tree decomposition of width w, the Weighted
Maximum Independent Set can be solved in time O(2" - n).
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Main results

Excluding S;; x & implication on tree-width

For all fixed non-negative integers i, j, k, t, the following classes
have bounded tree-width:

o (theta, triangle, S;; x)-free graphs
@ (even hole, pyramid, K;, S; «)-free graphs

i edges

/
\ J edges

k edges

Sijk

Why excluding S; ; «?

@ Graphs with no subdivision of claw have been widely studied.
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Main results

Tree-width of subclasses of theta-free graphs and

even-hole-free graphs

Theorem (Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

For k > 1, every (theta, triangle, Sy i « )-free graph G has
tree-width at most 2(R(3,4k —1))3 — 1.

Theorem (Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

For k > 1, every (even hole, pyramid, K, Sk k k)-free graph G has
tree-width at most (t — 1)(R(t,4k —1))3 — 1.

Rk,s: Ramsey number
Idea of proof:
@ Properties of graphs with high tree-width

e If graphs in the class have high tree-width, then they must
contain a forbidden structure
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Keyproof of main theorems

Proof part 1

Essential properties of graphs with bounded tree-width:

Theorem (Tree—width*; Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

Let G be a graph and k € 7. If G does not contain:

o Koy, and

@ an induced subgraph admitting a minimal separator of size k,
then the tree-width of G is O ((2k poly log 2k)9).

Figure: A minimal separator C separating A and B
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Keyproof of main theorems

Proof part 1

Suppose G s.t. tw(G) > Q ((2k poly log 2k)!°), then G contains
a (2k x 2k)-grid-minor [Chuzhoy (2016)]

2k

A

et
(oo N e

Figure: Consider the big grid minor in G with the minimum size
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Keyproof of main theorems

Proof part 1

2k
A
ﬁ
k . . . . .

Figure: If two columns are anticomplete, then we get a minimal separator
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Keyproof of main theorems

Proof part 1

2k

Figure: So every two columns are "adjacent”
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Keyproof of main theorems

Proof part 1

Figure: Consider every column as a component
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Keyproof of main theorems

Proof part 1

Figure: We minimize the size of the Kyx-model
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Keyproof of main theorems

Proof part 1

a
k %

s
- \ \ ]‘

%-— |V (Hy)| > 2

Figure: If Vi, |V(H;)| = 1, then we get a big clique
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Keyproof of main theorems

Proof part 1

v

Hf_)k\ui

Figure: AHak s.t. |Hak| > 2; Hax \ v anticomplete to H;
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Keyproof of main theorems

Proof part 1

Hl H2 Hg HK' HQk-\l’

N
Hy\ul |

Figure: Hax \ v is connected to > k other components
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Keyproof of main theorems

Proof part 1

Hl H2 Hg HK' HQk-\l’

N

Figure: Hoi \ v separated to H; by > k disjoint path
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Keyproof of main theorems

Proof part 1

A better bound for Theorem*:

Theorem ( Tree-width**; Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

Let G be a graph and let k > 2 and s > 1 be positive integers. If
G does not contain

o K
@ a minimal separator of size larger than s
then tw(G) < (k —1)s3 — 1.
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Proof of main theorem

Proof part 2

Recall that, we aim to prove:

For k > 1, every (even hole, pyramid, K, Sk k i )-free graph G has
tree-width at most (t — 1)(R(t, 4k —1))3 — 1.

Sketch of proof.

Suppose that tw(G) > (t — 1)(R(t,4k —1))3 — 1.
We will prove that G contains a forbidden structure.
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Proof of main theorem

Proof part 2

Figure: Since tw(G) is large but G contains no big clique, then G
contains a large minimal separator



Bounds on tree-width
°

Proof of main theorem

Proof part 2

Figure: By Ramsey Thm, G contains a large minimal separator which is
an independent set
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Proof of main theorem

Proof part 2

Y

Figure: x and y have neighbors on each partition, and there exist a path
connecting x and y in each of the partitions
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Proof of main theorem

Proof part 2

Figure: Every vertex has neighbors on each partition because C is a
minimal separator



Bounds on tree-width
°

Proof of main theorem

Proof part 2

Y

Figure: These attachments yield a forbidden structure
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Proof of main theorem

Proof part 2

Y

Figure: We cannot have crossing spokes because of nestedness property
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Proof of main theorem

Proof part 2

Figure: Take the middle vertex of C to start the Sy x «
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Conclusion

Remark

Our result on (even hole, pyramid, K;, S;; «)-free graphs does not
settle a new complexity result for the maximum independent set
problem.

e MIS is polynomial in (even hole, pyramid)-free graphs
[Chudnovsky, Thomassé, Trotignon, and Vuskovi¢ (2019)]



EHF graphs of bounded A
°0

CHAPTER b5:
BOUNDED MAXIMUM
DEGREE
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Motivation

What can be observed from even-hole-free layered wheels?
e Existence of large clique minor

o Existence of vertices with high degree

Are the two conditions necessary?

What is the tree-width of:
@ even-hole-free graphs with no big clique minor?

@ even-hole-free graphs of bounded degree?
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Maximum degree definition

Terminology: maximum degree of a graph (A)

@ Degree of v (d(v)): the number of vertices adjacent to v

@ Maximum degree:

A(G) = d
(G) e (v)

S

Figure: Graph G with A(G) =8
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EHF graphs when A < 3

Even-hole-free graphs with A <3

@ Subcubic=A <3
@ (Theta, prism)-free graphs form superclass of EHF graphs

Theorem (Decomposition; Aboulker, Adler, Kim, Sintiari, Trotignon (2020))

Let G be a subcubic (theta, prism)-free graph. Then one of the
following holds:

@ G is a basic graph;

@ G has a clique separator of size at most 2;

@ G has a proper separator.

@ We have a full structure theorem for the class of subcubic
(theta, prism)-free graphs.
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EHF graphs when A < 3

Even-hole-free graphs with A <3

The basic graphs:

o o—o , AN -~ l
. , X N
\ 1 S~
! ' --Ice - -
' \ i -
, N , /.-

K,,n<4 hole cube proper wheel pyramid  extended prism

Proper separator:
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)
e\
—— \
[T
——
]
—

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic
EHF graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic
EHF graphs
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EHF graphs when A < 3

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic
EHF graphs
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EHF graphs when A < 3

Tree-width of subcubic EHF graphs

Theorem (Tree—width,' Aboulker, Adler, Kim, Sintiari, Trotignon (2020))

Every subcubic (theta, prism)-free graph (and therefore every
even-hole-free subcubic graph) has tree-width at most 3.

K,,n<d4 hole cube proper wheel  pyramid extended prism
tw <3 tw =2 tw =3 tw =3 tw =3 tw =3

Figure: Chordal graphs containing the basic graphs
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EHF graphs when A < 3

Tree-width of subcubic EHF graphs

@ Gluing along a clique and proper gluing preserve the tree-width

X Y X Y

Figure: Gluing along a clique cutset
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EHF graphs when A < 3

Tree-width of subcubic EHF graphs

@ Gluing along a clique and proper gluing preserve the tree-width

X Y X Y

Figure: Gluing along a proper separator
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EHF pyramid-free graphs with Delta < 4

Structure Theorem of EHF pyramid-free graphs A = 4

Theorem (Decomposition; Sintiari, Trotignon (2020))

Let G be an (even hole, pyramid)-free graph with A(G) < 4. Then
one of the following holds:

@ G is a basic graph;

@ G has a clique separator of size at most 3;

@ G has a proper separator for C.

Figure: Basic graphs in the decomposition of the class
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EHF pyramid-free graphs with Delta < 4

The tree-width of EHF pyramid-free graphs A = 4

Theorem ( Tree-width; Sintiari, Trotignon (2020))
Every (even hole, pyramid)-free graph with A < 4 has tree-width

at most 4.
A% SR
@ ; \ / H{ o ‘ y
() (h) (©) ()

tw < 4 tw =2

A .
@/ @ " ’@ ’@
G y «
x y" y b
() (f) (2 (h) (i)

Figure: The basic graphs

@ Gluing along a clique and proper gluing preserve the tree-width
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Publication

@ N. L. D. Sintiari and N. Trotignon.

(Theta, triangle)-free and (even hole, K4 )-free graphs. Part 1 : Layered
wheels

Published in Journal of Graph Theory (CoRR, abs/1906.10998), 2021.

@ M. Pilipczuk, S. Thomass, N. L. D. Sintiari, and N. Trotignon.

(Theta, triangle)-free and (even hole, K4 )-free graphs. Part 2 : Bounds on
treewidth.
Published in Journal of Graph Theory (CoRR, abs/2001.01607), 2021.

@ P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon.
On the tree-width of even-hole-free graphs.

To appear in European Journal of Combinatorics (CoRR,
abs/2008.05504), 2021.
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Future Works

Conjecture (Logarithmic tree-width)

G (even hole, Ky)-free, then tw(G) = O(log |V(G)]).

Approach: does it exist a family Fy s.t.
@ YH € Fy, |V(H)| > r’, for some r > 1;
@ VG (even hole, Ky, Fy)-free graph, tw(G) < t - £ for some t > 0.
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Open problems

Conjecture (Grid-minor-like theorem)

3f s.t. iftw(G) > f(k), then G contains (as induced subgraph):
@ a subdivision of a (k x k)-wall; or
@ the line graph of a subdivision of a (k x k)-wall; or

@ a vertex of degree at least k.

Conjecture (Grid-minor-like theorem (stronger version))

3f s.t. iftw(G) > f(k), then G contains (as induced subgraph):
o Ky, Ki; or
@ a subdivision of a (k x k)-wall; or
@ the line graph of a subdivision of a (k x k)-wall; or

@ a wheel with at least k spokes.




Thank you for listening!
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