Width Parameters on Even-Hole-Free Graphs

Ni Luh Dewi Sintiari
LIP, ENS de Lyon
Supervised by Nicolas Trotignon

June 29, 2021

Outlines

Title: Width Parameters on Even-Hole-Free Graphs
(1) Introduction: terminology \& motivation
(2) A brief survey on width of even-hole-free graphs
(3) Layered wheels: construction and analysis
(4) Bounds on the width of subclasses of even-hole-free graphs
(0) Even-hole-free graphs of bounded maximum degree
(0) Conclusion \& open problems

Chapter 1: InTRODUCTION

Graphs

Figure: A graph G

- Vertices or nodes (denoted by $V(G)$)
- Edges (denoted by $E(G)$)

A motivating example

- Graphs are used to model pairwise relations between objects.

Figure: Graph representation of Lyon subway network

Optimization problems in Graph Theory

Some well-known graph optimization problems (NP-Complete)

- Coloring: Assignment of colors to the vertices, no adjacent vertices receive the same color \rightarrow minimize the number of colors

Optimization problems in Graph Theory

Some well-known graph optimization problems (NP-Complete)

coloring
chromatic number : χ

maximum clique clique number : ω

- Coloring: Assignment of colors to the vertices, no adjacent vertices receive the same color \rightarrow minimize the number of colors
- Maximum clique: Finding set of pairwise adjacent vertices with maximum cardinality

Optimization problems in Graph Theory

Some well-known graph optimization problems (NP-Complete)

coloring
chromatic number : χ

maximum clique clique number : ω

max independent set independent set number: α

- Coloring: Assignment of colors to the vertices, no adjacent vertices receive the same color \rightarrow minimize the number of colors
- Maximum clique: Finding set of pairwise adjacent vertices with maximum cardinality
- Maximum independent set: Finding set of pairwise non-adjacent vertices with maximum cardinality

Even-hole-free graphs

Terminology: even hole

Even-hole-free graphs

Terminology: even hole

> cycle

Even-hole-free graphs

Terminology: even hole

cycle

chordless cycle
(hole if it has length ≥ 4)

Even-hole-free graphs

Terminology: even hole

cycle

odd hole

Even-hole-free graphs

Terminology: even hole

even hole

Terminology: induced subgraph, even-hole-free graphs

- H is an induced subgraph of G if H can be obtained from G by deleting vertices (denoted by $H \subseteq_{\text {ind }} G$)

Figure: A graph, an induced subgraph, and a non-induced subgraph

Even-hole-free graphs

Terminology: induced subgraph, even-hole-free graphs

- H is an induced subgraph of G if H can be obtained from G by deleting vertices (denoted by $H \subseteq_{\text {ind }} G$)

Figure: A graph, an induced subgraph, and a non-induced subgraph

- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{F} is a family of graphs, \mathcal{F}-free means H-free, $\forall H \in \mathcal{F}$

Even-hole-free (EHF): the graph does not contain even hole as an induced subgraph

Motivation

Motivation: relation to perfect graphs

Perfect graphs:

- Every graph G satisfies $\chi(G) \geq \omega(G)$
- G is perfect if $\forall H \subseteq$ ind $G, \chi(H)=\omega(H)$

$$
C_{2 k+1}, k=3, \chi(G)=3, \omega(G)=2
$$

an antihole $\overline{C_{k}}$: the "complement" of a hole C_{k}

- Strong Perfect Graph Conjecture (Berge, 1961): G is perfect iff G is (odd hole, odd antihole)-free
(proved by Chudnovsky, Robertson, Seymour, Thomas (2002))

Motivation: perfect graphs versus even-hole-free graphs

Dichotomy of the two classes:

- EHF graphs are (even hole, even antihole length ≥ 6)-free

Comparison of the decomposition theorems

Decomposition theorem: If G belongs to \mathcal{C} then G is either "basic" or G has some particular cutset.

	EHF graphs *	Perfect graphs ${ }^{\dagger}$
Basic graphs	cliques, holes, long pyramids, nontrivial basic	bipartite, $\overline{\text { bipartite }}$, L(bipartite), doubled graphs
Cutsets	2-join, star cutset	2-join, $\overline{\text { 2-join }}$ homogeneous pair, balanced skew partition

[^0]
Motivation

Motivation: perfect graphs versus even-hole-free graphs

	EHF graphs	Perfect graphs
Structure	"simpler"	more complex
Maximum clique	easy	easy
Coloring	$?$	easy
Maximum independent set	$?$	easy

"Easy" means the complexity is polynomial

- Goal of study: to have better understanding of the structure of even-hole-free graphs

Chapter 2:
 Survey on Tree-width

Tree-width and chordalization

Tree-width: a parameter measuring how far a graph from being a tree

$$
\operatorname{tw}(G)=\min _{H \text { chordalization of } G}\{\omega(H)-1\}
$$

- Chordal graphs are graphs possessing no hole
- A chordalization of G is a graph H obtained by adding edges to G, such that H is chordal

Figure: A chordalization of a graph and its tree-like structure

The use of tree-width

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded tree-width.

Some graph problems expressible in MSO:

- coloring, maximum independent set, maximum clique

The use of tree-width

Theorem (Courcelle (1990))

Every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded tree-width.

Some graph problems expressible in MSO:

- coloring, maximum independent set, maximum clique

Sufficient conditions for graphs with high tree-width:

- large ω
- big clique minor

Relation between width parameters

Lemma (Corneil, Rotics (2005) and Oum, Seymour (2006))
For every graph G, the followings hold:

- $\operatorname{rw}(G) \leq \operatorname{cw}(G) \leq 2^{r w(G)+1}$;
- $\mathrm{cw}(G) \leq 3 \cdot 2^{\mathrm{tw}(G)-1}$;
- $\operatorname{tw}(G) \leq \operatorname{pw}(G)$.

Notation: rw: rank-width, cw: clique-width, tw: tree-width, pw: path-width

Survey: bounded tree-width EHF graphs

Remark: in general, the tree-width of even-hole-free graphs is unbounded

- Planar EHF $\rightarrow t w \leq 49$ [Silva, da Silva, Sales (2010)]
- K_{3}-free EHF $\rightarrow t w \leq 5$ [Cameron, da Silva, Huang, Vušković (2018)]
- Pan-free EHF $\rightarrow t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng (2015)]
- Cap-free EHF $\rightarrow t w \leq 6 \omega(G)-1$ [Cameron, da Silva, Huang, Vušković (2018)]

Figure: Pan and cap

Survey: unbounded tree-width EHF graphs

Diamond-free EHF \rightarrow unbounded rank-width (stronger) [Adler, Le, Müller, Radovanović, Trotignon, Vušković (2017)]

Figure: A diamond-free EHF graph without clique cutset with large rank-width

Problem statement

- All examples of EHF graphs with unbounded width contain large cliques

Problem statement

- All examples of EHF graphs with unbounded width contain large cliques

Problem (Cameron, Chaplick, Hoàng (2018))

Let G be even-hole-free, is $t w(G) \leq f(\omega(G))$?

Problem statement

- All examples of EHF graphs with unbounded width contain large cliques

Problem (Cameron, Chaplick, Hoàng (2018))

Let G be even-hole-free, is $t w(G) \leq f(\omega(G))$?

- No, we prove that there are EHF graphs with small ω, but high tree-width
- We study even-hole-free graphs with no K_{4}

Chapter 3:

 Layered Wheel
Relation between EHF graphs \& Truemper configurations

Truemper configurations

theta

prism

pyramid

wheel

Figure: Truemper configurations; dashed lines represent paths of length at least 1

Truemper configurations

theta

prism

pyramid

wheel

Figure: Truemper configurations; dashed lines represent paths of length at least 1

- They appear in the decomposition theorems of graphs in the classes

	EHF graphs	Perfect graphs
Theta	\times	\checkmark
Prism	\times	\checkmark
Pyramid	\checkmark	\times
Wheel	(no even wheel)	(no wheel of some kind)

Relation between EHF graphs \& Truemper configurations

Theta-free graphs (TTF) \& even-hole-free graphs (EHF)

	(Even hole, K_{4})-free graphs	(Theta, triangle)-free graphs
Theta	\times	\times
Prism	\times	\times
Pyramid	\times	\checkmark
Wheel	\checkmark	\checkmark

Construction of layered wheels

Our main results

We prove that the following classes have unbounded tree-width

- (Theta, triangle)-free graphs
- (Even hole, K_{4})-free graphs

Layered wheels: family of graphs in the classes with high tree-width

Notation $G_{\ell, k}$

- $\ell \geq 1$ is the number of layers
- $k \geq 4$ is the length of the shortest hole

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Construction: (theta, triangle)-free layered wheel

TTF layered wheel $G(\ell, k)$, with $\ell=2$ and $k=4$

Construction of layered wheels

Sketch of proof

- $G_{\ell, k}$ is full of subdivision of claws, but it is theta-free

- $t w\left(G_{\ell, k}\right) \geq \ell$, because $G_{\ell, k}$ contains big clique minor

contract every layer into a vertex

Construction of layered wheels

Construction: (even hole, K_{4})-free layered wheel

- The first two layers are similar to TTF-layered-wheel

Logarithmic tree-width

Logarithmic bound on the tree-width of layered wheels

The tree-width of layered wheel is still bounded

Theorem (Sintiari, Trotignon (2019))
 $t w\left(G_{\ell, k}\right)=O\left(\log \left(\left|V\left(G_{\ell, k}\right)\right|\right)\right)$

Key of proof:
(1) To reach $\operatorname{tw}\left(G_{\ell, k}\right) \geq \ell$, it must be $\left|V\left(G_{\ell, k}\right)\right| \geq 3^{\ell}$ vertices.
(2) Upper bound: $\operatorname{tw}\left(G_{\ell, k}\right) \leq 2 \ell$.

Summary of results

Theorem (Sintiari, Trotignon (2019))
$\forall \ell \geq 1, k \geq 4$ integers, \exists a graph $G_{\ell, k}$ s.t.

- $G_{\ell, k}$ is theta-free;
- every hole in $G_{\ell, k}$ has length $\geq k$;
- $\ell \leq t w\left(G_{\ell, k}\right) \leq c \cdot \log \left(\left|V\left(G_{\ell, k}\right)\right|\right)$, for some constant c.

Summary of results

Theorem (Sintiari, Trotignon (2019))

$\forall \ell \geq 1, k \geq 4$ integers, \exists a graph $G_{\ell, k}$ s.t.

- $G_{\ell, k}$ is theta-free;
- every hole in $G_{\ell, k}$ has length $\geq k$;
- $\ell \leq t w\left(G_{\ell, k}\right) \leq c \cdot \log \left(\left|V\left(G_{\ell, k}\right)\right|\right)$, for some constant c.

Theorem (Sintiari, Trotignon (2019))

$\forall \ell \geq 1, k \geq 4$ integers, \exists a graph $G_{\ell, k}$ s.t.

- $G_{\ell, k}$ is (even hole, K_{4}, pyramid)-free;
- every hole in $G_{\ell, k}$ has length $\geq k$;
- $\ell \leq t w\left(G_{\ell, k}\right) \leq c \cdot \log \left(\left|V\left(G_{\ell, k}\right)\right|\right)$, for some constant c.

Chapter 4:
 Bounds on Tree-width

Motivation: the logarithmic conjecture

Conjecture (Logarithmic tree-width; Sintiari, Trotignon (2019))

$\exists c$ constant s.t. \forall (even hole, K_{4})-free graph G, $t w(G) \leq c \log |V(G)|$.

If the conjecture is true, then many graph optimization problems are polynomial-time solvable.

Theorem (Bodlaender (1988))

$\forall G$, given a tree decomposition of width w, the Weighted Maximum Independent Set can be solved in time $\mathcal{O}\left(2^{w} \cdot n\right)$.

Main results

Excluding $S_{i, j, k}$ \& implication on tree-width

For all fixed non-negative integers i, j, k, t, the following classes have bounded tree-width:

- (theta, triangle, $S_{i, j, k}$)-free graphs
- (even hole, pyramid, $K_{t}, S_{i, j, k}$)-free graphs

$$
S_{i, j, k}
$$

Why excluding $S_{i, j, k}$?

- Graphs with no subdivision of claw have been widely studied.

Tree-width of subclasses of theta-free graphs and even-hole-free graphs

Theorem (Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

For $k \geq 1$, every (theta, triangle, $S_{k, k, k}$)-free graph G has tree-width at most $2(R(3,4 k-1))^{3}-1$.

Theorem (Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

For $k \geq 1$, every (even hole, pyramid, $K_{t}, S_{k, k, k}$)-free graph G has tree-width at most $(t-1)(R(t, 4 k-1))^{3}-1$.
$R_{k, s}$: Ramsey number

Idea of proof:

- Properties of graphs with high tree-width
- If graphs in the class have high tree-width, then they must contain a forbidden structure

Proof part 1

Essential properties of graphs with bounded tree-width:

Theorem (Tree-width*; Pilipczuk, Sintiari, Thomassé, Trotignon (2020))

Let G be a graph and $k \in \mathbb{Z}^{+}$. If G does not contain:

- $K_{2 k}$; and
- an induced subgraph admitting a minimal separator of size k, then the tree-width of G is $\mathcal{O}\left((2 k \text { poly } \log 2 k)^{19}\right)$.

Figure: A minimal separator C separating A and B

Proof part 1

Suppose G s.t. $t w(G) \geq \Omega\left((2 k \text { poly } \log 2 k)^{19}\right)$, then G contains a $(2 k \times 2 k)$-grid-minor [Chuzhoy (2016)]

Figure: Consider the big grid minor in G with the minimum size

Proof part 1

Figure: If two columns are anticomplete, then we get a minimal separator

Proof part 1

Figure: So every two columns are "adjacent"

Proof part 1

Figure: Consider every column as a component

Proof part 1

Figure: We minimize the size of the $K_{2 k}$-model

Proof part 1

Figure: If $\forall i,\left|V\left(H_{i}\right)\right|=1$, then we get a big clique

Keyproof of main theorems

Proof part 1

Figure: $\exists H_{2 k}$ s.t. $\left|H_{2 k}\right| \geq 2 ; \quad H_{2 k} \backslash v$ anticomplete to H_{i}

Keyproof of main theorems

Proof part 1

Figure: $H_{2 k} \backslash v$ is connected to $\geq k$ other components

Keyproof of main theorems

Proof part 1

Figure: $H_{2 k} \backslash v$ separated to H_{i} by $\geq k$ disjoint path

Proof part 1

A better bound for Theorem*:
Theorem (Tree-width**; Pilipczuk, Sintiari, Thomassé, Trotignon (2020))
Let G be a graph and let $k \geq 2$ and $s \geq 1$ be positive integers. If G does not contain

- K_{k}
- a minimal separator of size larger than s
then $\operatorname{tw}(G) \leq(k-1) s^{3}-1$.

Proof of main theorem

Proof part 2

Recall that, we aim to prove:

Theorem

For $k \geq 1$, every (even hole, pyramid, $K_{t}, S_{k, k, k}$)-free graph G has tree-width at most $(t-1)(R(t, 4 k-1))^{3}-1$.

Sketch of proof.
Suppose that $t w(G)>(t-1)(R(t, 4 k-1))^{3}-1$.
We will prove that G contains a forbidden structure.

Proof of main theorem

Proof part 2

$A^{\prime} \quad C^{\prime} \quad B^{\prime}$

Figure: Since $t w(G)$ is large but G contains no big clique, then G contains a large minimal separator

Proof of main theorem

Proof part 2

Figure: By Ramsey Thm, G contains a large minimal separator which is an independent set

Proof of main theorem

Proof part 2

Figure: x and y have neighbors on each partition, and there exist a path connecting x and y in each of the partitions

Proof of main theorem

Proof part 2

Figure: Every vertex has neighbors on each partition because C is a minimal separator

Proof of main theorem

Proof part 2

Figure: These attachments yield a forbidden structure

Proof of main theorem

Proof part 2

Figure: We cannot have crossing spokes because of nestedness property

Proof of main theorem

Proof part 2

Figure: Take the middle vertex of C to start the $S_{k, k, k}$

Conclusion

Remark

Our result on (even hole, pyramid, $K_{t}, S_{i, j, k}$)-free graphs does not settle a new complexity result for the maximum independent set problem.

- MIS is polynomial in (even hole, pyramid)-free graphs [Chudnovsky, Thomassé, Trotignon, and Vušković (2019)]

Chapter 5: Bounded Maximum Degree

Motivation

What can be observed from even-hole-free layered wheels?

- Existence of large clique minor
- Existence of vertices with high degree

Are the two conditions necessary?

What is the tree-width of:

- even-hole-free graphs with no big clique minor?
- even-hole-free graphs of bounded degree?

Terminology: maximum degree of a graph (Δ)

- Degree of $v(d(v))$: the number of vertices adjacent to v
- Maximum degree:

$$
\Delta(G)=\max _{v \in V(G)} d(v)
$$

Figure: Graph G with $\Delta(G)=8$

Even-hole-free graphs with $\Delta \leq 3$

- Subcubic $=\Delta \leq 3$
- (Theta, prism)-free graphs form superclass of EHF graphs

Theorem (Decomposition; Aboulker, Adler, Kim, Sintiari, Trotignon (2020))

Let G be a subcubic (theta, prism)-free graph. Then one of the following holds:

- G is a basic graph;
- G has a clique separator of size at most 2;
- G has a proper separator.
- We have a full structure theorem for the class of subcubic (theta, prism)-free graphs.

EHF graphs when $\Delta \leq 3$

Even-hole-free graphs with $\Delta \leq 3$

The basic graphs:

$K_{n}, n \leq 4$

hole

cube

proper wheel

pyramid

extended prism

Proper separator:

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Decomposition of a non-basic subcubic (theta, prism)-free graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

EHF graphs when $\Delta \leq 3$

Decomposing subcubic EHF graphs (an example)

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

Tree-width of subcubic EHF graphs

Theorem (Tree-width; Aboulker, Adler, Kim, Sintiari, Trotignon (2020))

Every subcubic (theta, prism)-free graph (and therefore every even-hole-free subcubic graph) has tree-width at most 3.

cube
$t w=3$

proper wheel $t w=3$

pyramid
$t w=3$

extended prism $t w=3$

Figure: Chordal graphs containing the basic graphs

EHF graphs when $\Delta \leq 3$

Tree-width of subcubic EHF graphs

- Gluing along a clique and proper gluing preserve the tree-width

Figure: Gluing along a clique cutset

EHF graphs when $\Delta \leq 3$

Tree-width of subcubic EHF graphs

- Gluing along a clique and proper gluing preserve the tree-width

Figure: Gluing along a proper separator

Structure Theorem of EHF pyramid-free graphs $\Delta=4$

Theorem (Decomposition; Sintiari, Trotignon (2020))

Let G be an (even hole, pyramid)-free graph with $\Delta(G) \leq 4$. Then one of the following holds:

- G is a basic graph;
- G has a clique separator of size at most 3;
- G has a proper separator for \mathcal{C}.

$K_{n}, n \leq 5$
hole

(a)

(c)

(d)

(e)

(f)

(h)

(i)

Figure: Basic graphs in the decomposition of the class

The tree-width of EHF pyramid-free graphs $\Delta=4$

Theorem (Tree-width; Sintiari, Trotignon (2020))

Every (even hole, pyramid)-free graph with $\Delta \leq 4$ has tree-width at most 4.

Figure: The basic graphs

- Gluing along a clique and proper gluing preserve the tree-width

Chapter 6:

Conclusion and Future Works

Publication

R
N. L. D. Sintiari and N. Trotignon.
(Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 1 : Layered wheels

Published in Journal of Graph Theory (CoRR, abs/1906.10998), 2021.
音
M. Pilipczuk, S. Thomass, N. L. D. Sintiari, and N. Trotignon.
(Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 2 : Bounds on treewidth.
Published in Journal of Graph Theory (CoRR, abs/2001.01607), 2021.
目
P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon.

On the tree-width of even-hole-free graphs.
To appear in European Journal of Combinatorics (CoRR, abs/2008.05504), 2021.

Future Works

Conjecture (Logarithmic tree-width)

G (even hole, $\left.K_{4}\right)$-free, then $\operatorname{tw}(G)=\mathcal{O}(\log |V(G)|)$.
Approach: does it exist a family \mathcal{F}_{ℓ} s.t.

- $\forall H \in \mathcal{F}_{\ell},|V(H)| \geq r^{\ell}$, for some $r>1$;
- $\forall G$ (even hole, $K_{4}, \mathcal{F}_{\ell}$)-free graph, $t w(G) \leq t \cdot \ell$ for some $t>0$.

Open problems

Conjecture (Grid-minor-like theorem)

$\exists f$ s.t. if $\operatorname{tw}(G)>f(k)$, then G contains (as induced subgraph):

- a subdivision of a $(k \times k)$-wall; or
- the line graph of a subdivision of a $(k \times k)$-wall; or
- a vertex of degree at least k.

Conjecture (Grid-minor-like theorem (stronger version))
$\exists f$ s.t. if $\operatorname{tw}(G)>f(k)$, then G contains (as induced subgraph):

- $K_{k}, K_{k, k}$; or
- a subdivision of a $(k \times k)$-wall; or
- the line graph of a subdivision of a $(k \times k)$-wall; or
- a wheel with at least k spokes.

Thank you for listening!

[^0]: *Ref: Conforti, Cornuéjols, Kapoor, Vušković (2002)
 ${ }^{\dagger}$ Ref: Chudnovsky, Robertson, Seymour, Thomas (2002)

